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Power and Energy Lab.

T.U.M.S.A.T.
　4) Radiation detection
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T.U.M.S.A.T. RISA radiation detector  

Radiation : TiO2 surface backed by an Al2O3
layer.

Aluminum shield box to reduce noise in the 
signal.

Feasibility study to check the electric reaction 
of RISA, and to develop the RISA detector for 
applications in the fields of medicine, 
engineering, and physics, such as γ-, β-, and X-
ray measurements.
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T.U.M.S.A.T.
Electrical reaction γ-ray detection 

Rutile TiO2
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T.U.M.S.A.T. Electric reaction caused by β- and X-ray 
radiation  

Facilities for radioactive irradiation 
at the Japan Nuclear Cycle 
Development Institute.

Uncertainty of the reference dose 
rate 10%.

100 V impressed and monitored.

Sensitivities of the detector are β-
ray > X-ray > γ-ray.

Collisional interaction ratios of the 
rays, β-ray > X-ray > γ-ray. 

The collisional interaction of the β-
rays differs from those of the X-
and γ-rays in the backing plate. 
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T.U.M.S.A.T.
　Heavy Ion measurement

Beam loss monitor
Conventional detector: Unstable, Short life
Beam loss monitor
Conventional detector: Unstable, Short life

NIRS (National Institute 
of Radiological Sciences) 

Japan 

HIMAC (Heavy Ion Medical Accelerator in Chiba)
(2004-2005)

HIMAC (Heavy Ion Medical Accelerator in Chiba)
(2004-2005)
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T.U.M.S.A.T.
　 for 6 MeV/u He and C-ion 
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Rise time of the 
output signals from 
the RISA detector is 
fast and the 
amplitude of output 
signals is in 
proportion to an 
energy deposited in 
the RISA Film.
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T.U.M.S.A.T. 5) RISA mechanism
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T.U.M.S.A.T. Monte Carlo simulation
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T.U.M.S.A.T. Electric behavior in RISA process

• Estimations were made for:
1) probabilities of the photon processes causing carrier 

generation
2) number of the generated electron from the energy deposition
3) flow rate of electrons from the substrate to TiO2 layer.

• It was suggested that:
1) Compton scattering in the substrate layer is dominant 
2) majority carrier for conduction is “electron”
3) electron flow from the substrate to TiO2 layer by diffusion 

has a significant contribution for yielding the conduction 
carrier.
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